期刊论文(统计截至2024年7月,最新动态详见//sites.google.com/view/wangtaihua):
[1] Cheng, H., Wang, T.*, Yang, D. (2024). Quantifying the regulation capacity of the Three Gorges Reservoir on extreme hydrological events and its impact on flow regime in a changing climate. Water Resources Research, 60(6), e2023WR036329.
[2] Han, J., Liu, Z., Woods, R., McVicar T.R., Yang, D., Wang, T., Hou, Y., Guo, Y., Li, C., Yang, Y. (2024). Streamflow seasonality in a snow-dwindling world. Nature, 629, 1075-1081.
[3] Yang, H., Wang, T., Yang, D., Yan, Z., Wu, J., Lei, H. (2024). Runoff and sediment effect of the soil-water conservation measures in a typical river basin of the Loess Plateau. Catena, 243, 108218.
[4] Zhao, B., Wang, T.*, Yang, D., Yang, S., Yang, C., Santisirisomboon, J. (2024). Derivation of flood elasticity under climate and forest change for a tropical monsoon basin of Thailand. Journal of Hydrology, 637, 131420.
[5] Yan, Z., Wang, T.*, Ma, T., Yang, D. (2024). Water-carbon-sediment synergies and trade-offs: Multi-faceted impacts of large-scale ecological restoration in the Middle Yellow River Basin. Journal of Hydrology, 634, 131099.
[6] Wang, T., Yang, D., Yang, Y., Zheng, G., Jin, H., Li, X., Yao, T., Cheng, G. (2023). Pervasive permafrost thaw exacerbates future risk of water shortage across the Tibetan Plateau. Earth’s Future, 11(10), e2022EF003463.
[7] Yang, J., Wang, T.*, Yang, D. (2023). Divergent responses of permafrost degradation to precipitation increases at different seasons on the eastern Qinghai-Tibet Plateau based on modeling approach. Environmental Research Letters, 18(9), 094038.
[8] Wang, T., Yang, D., Yang, Y., Zheng, G., Jin, H., Li, X., Yao, T., Cheng, G. (2023). Unsustainable water supply from thawing permafrost on the Tibetan Plateau in a changing climate. Science Bulletin, 68(11), 1105-1108.
[9] 王泰华, 杨大文. (2023). 2001—2020年三江源冻土区植被物候变化特征分析. 冰川冻土, 45(2), 711-723.
[10] Li, X., Wang, T.*, Zhou, Z., Su, J., Yang, D.* (2023). Seasonal characteristics and spatio-temporal variations of the extreme precipitation-air temperature relationship across China. Environmental Research Letters, 18(5), 054022.
[11] Liu, Z., Wang, T., Li, C., Yang, W., Yang, H. (2023). A physically-based potential evapotranspiration model for global water availability projections. Journal of Hydrology, 622(B), 129767.
[12] Liu, Z., Wang, T., Yang, H. (2023). Overestimated global dryland expansion with substantial increases in vegetation productivity under climate warming. Environmental Research Letters, 18(5), 054024.
[13] Yang, S., Zhao, B., Yang, D., Wang, T., Yang, Y., Ma, T., Santisirisomboon, J. (2023). Future changes in water resources, floods and droughts under the joint impact of climate and land-use changes in the Chao Phraya basin, Thailand. Journal of Hydrology, 620(A), 129454.
[14] Ma, T., Wang, T., Yang, D., Yang, S. (2023). Impacts of vegetation restoration on water resources and carbon sequestration in the mountainous area of Haihe River basin, China. Science of the Total Environment, 869, 161724.
[15] Yang, J., Wang, T., Yang, D., Yang, Y. (2023). Insights into runoff changes in the source region of Yellow River under frozen ground degradation. Journal of Hydrology, 617(A), 128892.
[16] Zhao, B., Wang, T., Yang, D., Yang, S., Lu, W., Santisirisomboon, J. (2023). The impacts of climatic and land surface characteristics on the storm-flood relationship in a tropical monsoon basin of Thailand. Journal of Hydrology, 616, 128809.
[17] Liu, Z., Yang, H., Wang, T., Yang, D. (2023). Estimating the annual runoff frequency distribution based on climatic conditions and catchment characteristics: A case study across China. International Soil and Water Conservation Research, 11(3), 470-481.
[18] Wang, T., Shi, R., Yang, D., Yang, S., Fang, B. (2022). Future changes in annual runoff and hydroclimatic extremes in the upper Yangtze River Basin. Journal of Hydrology, 615(A), 128738.
[19] Wang, T., Yang, D., Zheng, G., Shi, R. (2022). Possible negative effects of earlier thaw onset and longer thaw duration on vegetation greenness over the Tibetan Plateau, Agricultural and Forest Meteorology, 326, 109192.
[20] Yang, W., Yang, H., Li, C., Wang, T., Liu, Z., Hu, Q., Yang, D. (2022). Long-term reconstruction of satellite-based precipitation, soil moisture, and snow water equivalent in China. Hydrology and Earth System Sciences, 26, 6427-6441.
[21] Liu, Z., Wang, T., Han, J., Yang, W., Yang, H. (2022). Decreases in mean annual streamflow and interannual streamflow variability across snow-affected catchments under a warming climate. Geophysical Research Letters, 49(3), e2021GL097442.
[22] Shi, R., Wang, T., Yang, D., Yang, Y. (2022). Streamflow decline threatens water security in the upper Yangtze River. Journal of Hydrology, 606, 127448.
[23] Li, Y., Wang, T., Yang, D., Tang, L., Yang, K., Liu, Z. (2021). Linkage between anomalies of pre-summer thawing of frozen soil over the Tibetan Plateau and summer precipitation in East Asia. Environmental Research Letters, 16(11), 114030.
[24] Wang, T., Yang, D., Yang, Y., Piao, S., Li, X., Cheng, G., Fu, B. (2020). Permafrost thawing puts the frozen carbon at risk over the Tibetan Plateau. Science Advances, 6(19), eaaz3513. (ESI高被引论文)
[25] Liu, Z., Yang, H., Wang, T. (2020). A simple framework for estimating the annual runoff frequency distribution under a non-stationarity condition. Journal of Hydrology, 592, 125550.
[26] Zheng, G., Yang, Y., Yang, D., Dafflon, B., Yi, Y., Zhang, S., Chen, D., Gao, B., Wang, T., Shi, R., Wu, Q. (2020). Remote sensing spatiotemporal patterns of frozen soil and the environmental controls over the Tibetan Plateau during 2002–2016. Remote Sensing of Environment, 247, 111927.
[27] Wang, T., Yang, D., Fang, B., Yang, W., Qin, Y., Wang, Y. (2019). Data-driven mapping of the spatial distribution and potential changes of frozen ground over the Tibetan Plateau. Science of the Total Environment, 649, 515-525.
[28] Wang, T., Yang, H., Yang, D., Qin, Y., Wang, Y. (2018). Quantifying the streamflow response to frozen ground degradation in the source region of the Yellow River within the Budyko framework. Journal of Hydrology, 558, 301-313.
[29] Wang, T., Yang, D., Qin, Y., Wang, Y., Chen, Y., Gao, B., Yang, H. (2018). Historical and future changes of frozen ground in the upper Yellow River Basin. Global and Planetary Change, 162, 199-211.
[30] Wang, Y., Yang, H., Gao, B., Wang, T., Qin, Y., Yang, D. (2018). Frozen ground degradation may reduce future runoff in the headwaters of an inland river on the northeastern Tibetan Plateau. Journal of Hydrology, 564, 1153-1164.
[31] Qin, Y., Chen, J., Yang, D., Wang, T. (2018). Estimating seasonally frozen ground depth from historical climate data and site measurements using a Bayesian model. Water Resources Research, 54(7), 4361-4375.
[32] Zheng, G., Yang, H., Lei, H., Yang, D., Wang, T., Qin, Y. (2018). Development of a physically based soil albedo parameterization for the Tibetan Plateau. Vadose Zone Journal, 17(1), doi:10.2136/vzj2017.05.0102.
[33] Qin, Y., Yang, D., Gao, B., Wang, T., Chen, J., Chen, Y., Wang, Y., Zheng, G. (2017). Impacts of climate warming on the frozen ground and eco-hydrology in the Yellow River source region, China. Science of the Total Environment, 605, 830-841.